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Abstract

Word level information on the Register Transfer Level
(RTL) offers information for efficient guidance of the proof
process in formal verification. Therefore several proof tech-
niques with integrated word level support from other re-
search fields can be applied for formal verification of circuit
designs as well.

The focus of this work is to evaluate the proof techniques
Boolean Satisfiability (SAT), SAT Modulo Theories (SMT),
SWORD and Constraint Satisfaction Problem (CSP) in the
context of formal hardware verification. An estimation of
the effort to encode standard circuit elements is given and
the advantages and disadvantages of the different encod-
ings is studied. In our experiments we consider equivalence
checking problems for circuit designs given on bit and word
level.

1. Introduction

Meanwhile formal verification is widely applied in in-
dustry. However, due to exponential growth of the design
sizes the effort for verification has become the major eco-
nomical issue. Usually circuits are modeled at the Register
Transfer Level (RTL), i.e. the specification includes word
level information. More precisely a design description con-
tains bit level parts (e.g. a flag in a CPU pipeline) as well
as word level operators applied to bit-vectors (e.g. addition,
multiplication or comparison) [7].

For verification an appropriate model is compiled from
two designs in case of equivalence checking or from the
design and a property in case of property checking. The

granularity of the resulting model depends on the chosen
proof technique. In the development of proof techniques
for formal verification an enormous progress has been made
during the last two decades. Efficient symbolic represen-
tations have become possible using Binary Decision Di-
agrams (BDDs) [3]. The next step was reached by dra-
matic improvements in Boolean Satisfiability (SAT). As
reported, verification methods based on new SAT solvers
(e.g. [12],[10]) handle significantly larger circuits. In par-
allel to the progress made in SAT the techniques for Con-
straint Satisfaction (CSP) [6] were improved. Satisfiability
problems in combination with decidable theory solvers led
to the development of Satisfiability Modulo Theories (SMT)
[18].

In this paper we consider the equivalence checking of
two circuit designs given in terms of bit level and word level
operations. First, for all proof techniques mentioned above
we analyze the effort to encode the verification task into
the dedicated problem instance. Thereby, we discuss the
advantages and disadvantages of each proof technique with
respect to the considered operation. In first experimental re-
sults circuit descriptions from different domains are studied.
The experiments show that word level provers benefit dur-
ing the solve process if the fraction of bit level operations is
low.

The paper is structured as follows. In Section 2 we
briefly review the different proof techniques. In Section 3
it is shown how verification problems on word level circuits
can be encoded for the respective techniques. Experimental
results are given in Section 4 before the paper is concluded
in Section 5.



2. Proof techniques

In this work several techniques are used for the formal
verification of circuits. To keep the paper self-contained, the
basic concepts of the proof techniques are briefly reviewed
in this section. For a more detailed description we refer
the reader to the respective publications. The encoding of
several circuit elements for the different proof engines is
discussed in more detail in the next section.

2.1. Boolean Satisfiability (SAT)

The Boolean Satisfiability problem (SAT problem) is
defined as the problem to determine whether there exists
an assignment to the variables of a Boolean function f :
{0,1}" — {0, 1} such that f evaluates to 1 or to prove that
no such assignment exists. Thereby, f is given in Conjunc-
tive Normal Form (CNF), i.e. a product-of-sum representa-
tion. Each CNF is a set of clauses where each clause is a set
of literals and each literal is a propositional variable or its
negation.

In the past several (backtracking) algorithms (SAT
solvers) were proposed [5, 13, 15, 10]. Most of them
are based on three essential procedures: (1) The decision
heuristic assigns values to free variables, (2) the propaga-
tion procedure determines implications due to the last as-
signment(s) and (3) the conflict analysis tries to resolve con-
flicts that occur during the search by backtracking. Ad-
vanced techniques like e.g. efficient Boolean constraint
propagation [15] or conflict analysis [13] are common in
state-of-the-art SAT solvers today.

Since a circuit is a representation of a Boolean formula, it
can be transformed into CNF. If the circuit consists of logic
gates each signal is mapped to a Boolean variable and each
gate to a set of clauses. If there are also word level structures
within the circuit, additional clauses and auxiliary variables
have to be introduced that describe the characteristic func-
tion of the word level operation. This mapping can be done
in time and space linear in the size of the circuit [19].

2.2. SAT Modulo Theories (SMT)

Due to the tremendous improvements in the performance
of provers for Boolean SAT, several researchers investigated
the combination of SAT solvers with decision procedures
for decidable theories resulting in SAT Modulo Theories
(SMT) [2, 8]. An SMT solver integrates a Boolean SAT
solver with other solvers for specialized theories (e.g. linear
arithmetic or bit-vector logic). Here the SAT solver works
on an abstract representation (also in CNF) of the problem
and guides the overall search process, while each (partial)
assignment of this representation has to be validated by the
theory solver for the theory constraints. Thus, advanced
SAT techniques together with specialized theory solvers can
be utilized.

In this work we use the bit-vector logic to represent the
circuit as an SMT instance. Similar to the SAT encoding
each signal and operation is represented by (bit-vector) vari-
ables and constraints, respectively. As constraints bit-vector
operations (e.g. bit-vector AND) or arithmetic operations
over bit-vectors (e.g. multiplication) can be used.

Because of this higher level of abstraction more infor-
mation of the problem instance is available. This can be ex-
ploited by e.g. canonizing [1] or bit-blasting [4]. The first
technique tries to represent as many constraints as possible
in a canonical form, which are then solved by a specialized
solver. During bit-blasting the constraints are normalized
and rewritten before transforming them into CNF and pass-
ing them to a common SAT solver. This preprocessing step
can reduce the size of the problem and may lead to an in-
stance that is easier to solve.

2.3. SWORD

Another proof engine is SWORD (SAT-like prover us-
ing word level information) which was first introduced in
[21]. In contrast to the bit-vector logic of SMT, SWORD
still uses Boolean variables, but takes care of their connec-
tion as a bit-vector. This allows the usage of (pure Boolean)
SAT-techniques like e.g. conflict analysis which cannot be
adapted to bit-vectors in an easy way.

Furthermore, word level information is given in terms of
so called modules. Each module defines an operation over
bit-vectors and provides a specialized decision and implica-
tion strategy for the respective operation. While a main al-
gorithm controls the overall solve process (including back-
tracking and conflict analysis) these specialized strategies
can be used to guide the search.

Thus, in contrast to SAT the heuristics and implication
engines of SWORD are more powerful because of the avail-
able word level information. Moreover, SWORD uses word
level information within the search process, not as a prepro-
cessing step like for bit-blasting in the corresponding SMT-
logic.

2.4. Constraint Satisfaction Problem (CSP)

Orthogonally to SAT, researchers also developed tech-
niques for the Constraint Satisfaction Problem (CSP) [6].
In CSP variables can be assigned with different values ac-
cording to the domain the variable is associated with. As
constraints arithmetic and logic operations over integers as
well as relations (i.e. a listing of supporting or conflicting
sets of variable assignments) can be used.!

This abstract model is utilized in the decision heuristic
and the propagation engine. E.g. variables which are sup-
posed to have a high impact on the problem will be pre-
ferred by the decision heuristic or implication will be done

n this work only the constraints and relation definitions of [17], which
are used for the CSP competitions, are considered.



Table 1. Encodings for the different proof techniques

[ CIRC. ELEM. [[ SAT [ SWORD [ SMT | CsP
Signal (n bit) n Boolean variables n Boolean variables 1 bit-vector vec of size n | 1 integer int
constitute bit- range [0:2" — 1]
vector

extraction ith bit direct access

direct access

bit = extract[i:i+ 1] vec eq(bit,mod(div(int,2"7"),2))
1 additional 1 additional
2 3

vars. in total - -
constrs. in total - -
n-bit and clauses for n and gates and module
vars. in total 2-n+n 2-n+n
constrs. in total 3.n 1

o = (bvand a b) for each bit i of a (and b, 0 resp.)
eq(aux,;,mod(div(a,2"%),2))

for each aux,;, auxy;, aux,;
eq(aux,i,(aux,y; and auxp;))

3 3+3-n

2 3-n+2-n

n-bit multiplexer clauses for n 1-bit multiplexer

multiplexer module

and( or( eq(s,1) , eq(o,dp) ) , or(
eq(s,0) , eq(o.di) ) )

o= (ite sdy dy)

n-(4-n)

vars. in total 2-n+1+n 2-n+1+n 4 4
constrs. in total 4.-n 1 2 7
n-bit adder gate representation of adder module o = (bvadd a b) eq(o, add(a,b))
1HA and (n—1) FA
aux. variables needed
vars. in total 2-n+(n+1)+aux_vars 2-n+(n+1) 3 3
constrs. intotal || 7+ (n—1)-17 1 2 2
n-bit multiplier gate representation of multiplier module o = (bvmul a b) eq(o,mul(a,b))
(n—1) n-bit adder and
n 2n-bit multiplexer
aux. variables needed
vars. in total 2-n+2-n+aux_vars 2-n+2-n 3 3
constrs. intotal || (n—1)-(7+(n—1)-17)+ 1 2 2

with respect to the particular operation. In contrast to other
proof techniques, the description (and thus the solvers as
well) do not support Boolean operations until now. How-
ever, the high level problem description motivate a more
detailed consideration of CSP for word level circuit verifi-
cation.

3. Application to Equivalence Checking

Formal equivalence checking of high level systems
means to compare implementations either on word level or
on bit level or a mix of both. Therefore, different require-
ments for the formal proof technique and the underlying in-
put language are given. The following word level circuit
elements should be supported:

e n-bit signals
e Bit access (e.g. bit select, bit slicing)
e n-bit logic operations (e.g. and, or, xor)

e n-bit arithmetic operations (e.g. addition, multiplica-
tion)

The encoding of the required circuit elements above have
different complexities for the studied proof techniques. In

the following we describe the encoding effort followed by
a discussion on the capabilities and strengths of each proof
technique.

3.1. Encoding Effort

In Table 1 an overview of the estimated effort for the en-
coding of standard circuit elements is presented, including
an n-bit variable declaration, n-bit logic operation and n-bit
arithmetic operation. The focus is on the number of vari-
ables and constraints that are necessary to declare a circuit
element. The number of variables includes inputs, outputs
and auxiliary variables.

Of course this estimation method provides only an indi-
cation for the effort of the underlying solver. Furthermore,
the implementations given in the table are the most com-
mon implementations only. The intension was not to find
the optimal implementation (see e.g. an add operation), but
to describe the effort for declaration and definition of the
functionality in general.

3.1.1 Declaration of n-bit Signals

The declaration of an n-bit signal is equivalent in SAT and
SWORD. For each bit of the signal a separate Boolean vari-



able has to be introduced resulting in n variables. Thus, the
connectivity of an n-bit signal, like a 32-bit integer, is lost
during declaration. This is different to a signal in SMT and
in CSP. SMT and CSP provide bit-vector variables and CSP
variables over a domain, respectively. Both types encapsu-
late the connectivity.

3.1.2 Bit Extraction from a n-bit Signal

Accessing single bits in SAT and SWORD is straight for-
ward because the bits are already given. So no extra over-
head is necessary. SMT provides the bit extracting function
extract for bit vector variables. The definition requires one
additional variable (the output bit) and two operations (as-
signment (=) and extract). Because CSP does not provide
direct bit access, the (potentially expensive) modulo and di-
vision have to be used to extract a single bit. Overall it takes
three constraints and a declaration of the additional output
bit variable.

3.1.3 n-bit Logic Operations

The encoding of typical logic operations like and, or, xor
in SAT takes e.g. for an and operation, with two n-bit in-
puts and one n-bit output, 3 - n separate clauses. The knowl-
edge of the connectivity of the clauses is lost during encod-
ing. SWORD instead keeps this knowledge by providing
an and module while using the same number of variables
as SAT. This is similar to SMT which provides a bvand op-
eration, but the definition takes an additional equality con-
straint. Because bit access in CSP is complex, the definition
of logic operations is complex, too. First, each bit of the in-
puts has to be assigned to auxiliaries variables using mod-
ulo and division. Then these variables have to be connected
with an and and equality (eq) operation to the output bits.
So in total 3 - n constraints for bit access and 2 - n constraints
for eq and and are needed.

3.1.4 n-bit Arithmetic Operations

SAT does not provide arithmetic operations. Thus in order
to encode an adder or a multiplier it is necessary to find a
suitable representation by clauses. For example, for an n-bit
addition it takes 7 clauses for one half adder and (n—1) - 17
clauses for the n — 1 full adders. Thus the encoding effort
is very high and the information that a specific clause once
belonged to an add operation is lost. SWORD, SMT and
CSP provide constraints for all word level operations.

3.2. Discussion

The encodings of circuits for the given proof techniques
differ in their complexity. Whereas some provide direct

support for the needed operations, we have to find a func-
tional equivalent implementation with a given limited set of
operators for the other techniques. For example CSP does
not provide a multiplexer operation which is a standard op-
eration of SMT.

As SAT is designed for Boolean reasoning, it has advan-
tages for circuits with a high number of logic gates. It pro-
vides not only direct bit access, but also an easy encoding
for logic gates. Because SAT solvers were significantly im-
proved during the last years, today SAT is the state-of-the-
art technique for equivalence checking on pure logic level.
The disadvantages of SAT are arithmetic operations which
are not directly supported. Instead, a transformation to a
number of clauses has to be provided, whereas the knowl-
edge of the original operation is lost. This means that in-
formation for potential guidance of the search process are
missing while the number of variables and clauses grows.
This makes the solve process harder as the circuit becomes
more complex. In order to use further information to guide
the search process, additinal techniques have to be imple-
mented on top of a SAT solver (see e.g. [20]).

SWORD provides a mix of direct bit access technique
in combination with word level operations. Based on the
knowledge of the connectivity of n-bit signals to a word
level module the SWORD solver can on the one hand ef-
ficiently direct the search process. On the other hand
the cheap bit access capabilities entails the creation of n
Boolean variables for an n-bit signal. Thus, the number of
variables are the same as for SAT except for auxiliaries vari-
ables, but the number of constraints is far less. This leads
to smaller instance sizes and the search process can still be
improved. However, the modules for each operation have to
be supported by the solver.

The bit-vector theory of SMT allows to use one variable
for an n-bit signal. Therefore, SMT can show a benefit for
circuits with a high number of arithmetic modules, because
the instance size grows far less in comparison to SAT and
SWORD. By its bit extracting technique, SMT provides ca-
pabilities for circuits with logic gates, too. However the bit
access takes always one more auxiliary signal and two extra
operator declarations. The information on the connection
of operators via word level variables enables SMT to pro-
vide an efficient pre-optimization step, before verifying the
simplified instance.

CSP as a word level proof technique is well applicable
for arithmetic operations. It uses exactly the same number
of variables and constraints to declare an adder and a mul-
tiplier as in SMT. Because bit access is expensive, it should
not be used frequently for verification of circuits with many
logic gates.

In the following section we evaluate the different proof
techniques for a number of equivalence checking problems.



Table 2. Results for the equivalence check of a CSA

| BITs || MINISAT (SAT) | YICES (SMT) | STP (SMT) | SWORD

ABSCON (CSP) |

4 0.004 s 0.024 s 0.012s | <0.001s 1.010s

8 0.004 s 0.136s 0.024 s 0.040 s 428.440 s
16 0.048 s 1.384 s 0.084 s 0.300 s T.O.
32 0.248 s 8.157 s 0.264 s 2.110s T.O.
64 1.580s 147.657 s 0.900 s 12.810 s T.O.
128 10.945 s T.O. 3984s | 76.130s T.O.

Table 3. Results for the equivalence check of a multiplier

[ BiTs || MINISAT (SAT) | YICES (SMT) | STP (SMT) | SWORD

ABSCON (CSP) |

2 < 0.001 s 0.004 s < 0.001s | <0.001s 0.450 s
4 0.016s 0.088 s 0.020s 0.020 s 1.740 s
6 0.496 s 2.264 s 0.688 s 0.300 s T.O.
8 22.677s 69.264 s 27.150s 6.76 s T.O.
10 491.251s T.O. 1159.990 s 151.79 s T.O.

4. Experimental Evaluation

In this section we report results for the application on
equivalence checking. As representatives for the proof tech-
niques that are described in Section 2 the following solvers
have been used: MiniSat [10] (version 2) is an open source
state-of-the-art SAT solver. As SMT solvers Yices [8, 9]
(version 1.0.8) and STP [11] have been selected. These
solvers implement different strategies for the handling of bit
vector operations. Yices uses bit-blasting for almost all bit-
vector operations while STP performs additional optimiza-
tions before the problem is bit-blasted and then given to
MiniSat. STP and Yices (version 1.0) have been ranked best
in the SMT-COMP’06 in the category of bit vector logic.
The SWORD solver has been described in [21]. For CSP
we have used the solver Abscon [14] (version 1.09) which
achieved a good ranking in the CSP Competition 2006 [16].

As benchmarks three different equivalence checking
problems have been selected to demonstrate the different
behavior of the various proof techniques:

e A gate level implementation of a conditional sum
adder (CSA) vs. a word level specification

e A multiplier implemented on the basis of addition and
bit shifting vs. a word level specification

e A binomial (a+b)? vs. the equivalent formulation
(a®> +b* +2-a-b) using only word level operations

All experiments have been carried out on a AMD Athlon
3700+ (2.2 GHz) with 1GB main memory running Linux.

The time limit for each instance was set to 1 hour (denoted
by T.O.). The results of all experiments can be found in
Table 2, Table 3 and Table 4, respectively. Thereby, col-
umn BITS denotes the bitwidth of the respective benchmark
while the other columns denote the run time of the respec-
tive proof technique in CPU seconds.

In the first experiments the CSA is considered. As
can be seen from Table 2, one of the SMT solvers (STP)
performs best on these benchmarks, followed by the SAT
solver MiniSat. For the equivalence check of the multi-
plier (see Table 3) SWORD performs best, again followed
by MiniSat. For the equivalence check of the binomial fi-
nally, SWORD outperformed all other solvers (see Table 4).
CSP performs worse for all the benchmarks considered.

However, we have found that the straightforward encod-
ing that is inspired by the translation of circuits to CNF is
not the best one for the STP solver. The declaration of aux-
iliary variables in-between the operations seems to prevent
the solver from efficient pre-processing. Thus, instances
that could otherwise easily be solved become hard for the
solver.

In summary we conclude from this first experiments that
SMT and SWORD benefit from word level information, but
SAT still has comparable run time. Because of the worse
run time CSP is not competitive at the moment. But further
improvements can be expected, because the development is
still in progress.



Table 4. Results for the equivalence check of a binomial

| BITS [| MINISAT (SAT) [ YICES (SMT) | STP (SMT) | SWORD

ABSCON (CSP) |

2 0.004 s 0.004 s 0.004s | <0.001s 0.640 s
4 0.056 s 0.088 s 0.052s 0.020 s 13.700 s
6 1.524 s 2.068 s 1.648 s 0.340 s T.O.
8 68.404 s 83.281 s 64.812 s 6.640 s T.O.
10 T.O. T.O. T.O. | 122920 s T.O.
5. Conclusion and Future Work [10] N. Eén and N. S6rensson. An extensible SAT solver. In SAT

In this work a first evaluation of different SAT like proof
techniques and their application in formal verification of
word level circuits was given. We described and discussed
the effort to encode circuit elements into dedicated problem
instances.

Based on first experiments SAT was seen as the best
proof technique for circuits with a high number of logic
gates. The usage of SMT and SWORD show advantages for
RTL-circuits. Moreover todays state-of-the-art SAT solvers
are competitive. But many new word level approaches are
under development and further improvements in this area
can be expected.

In future work we plan to study the influence of alterna-
tive encodings for the proof engines.
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